Перевод: с русского на все языки

со всех языков на русский

теоретические положения

  • 1 теоретические положения

    Теоретические положения-- The theoretical background and an apparatus suitable for this type of test are described in [...].

    Русско-английский научно-технический словарь переводчика > теоретические положения

  • 2 теоретические положения механики разрушения

    Универсальный русско-английский словарь > теоретические положения механики разрушения

  • 3 строить теоретические положения

    General subject: theorize

    Универсальный русско-английский словарь > строить теоретические положения

  • 4 теоретический

    Русско-английский научно-технический словарь переводчика > теоретический

  • 5 положение

    Положение - position (местонахождение; ситуация); location (местонахождение, амер.); situation, condition (ситуация); status (положение дел); statute (закон, устав)
    —установить выключатель в положение «ВЫКЛ», «ВКЛ», «СТОП»

    Русско-английский научно-технический словарь переводчика > положение

  • 6 туныктымо

    туныктымо
    Г.: тымдымы
    1. прич. от туныкташ
    2. прил. просветительский; связанный с распространением знаний; образовательный, связанный с образованием, просвещением; образования, просвещения

    Калыкым туныктымо пашалан оксам чаманыман огыл. «Мар. ком.» Нельзя жалеть денег на народное образование (букв. на дело просвещения народа).

    3. прил. учебный, обучения, преподавания; связанный с обучением, преподаванием

    Туныктымо курс учебный курс;

    туныктымо методике методика обучения;

    туныктымо центр учебный центр.

    Туныктымо кече йомеш ынде. П. Корнилов. Теперь пропадет учебный день.

    (Андрий) марий йылмым туныктымо йӧн нерген докладчикын тезисшым ялт йӧрдымашыш луктын, пеш пӱсын ойлен. Я. Ялкайн. Андрий говорил очень резко, представив тезисы докладчика о методе преподавания марийского языка как совершенно негодные.

    4. прил. поучительный; наставительный, нравоучительный

    Туныктымо ой поучительное высказывание;

    туныктымо тон наставительный тон.

    5. прил. учёный, выученный чему-л., обученный; дрессированный

    Туныктымо тигр дрессированный тигр.

    Эчанын туныктымо шырчыкше уло. А. Айзенворт. У Эчана есть обученный скворец.

    6. в знач. сущ. учение, обучение, преподавание

    Попын туныктымыжым шкат умылен ом сеҥе. О. Тыныш. Учение попа я и сам до конца не могу понять.

    Предметым туныктымо годым тунемшылан келге шинчымашым пуаш кӱлеш. В. Косоротов. При преподавании предмета надо давать учащимся глубокие знания.

    7. в знач. сущ. просвещение, образование; распространение знаний

    Рвезе-влак, ӱдыр-влак шке йылмышт дене возаш, возымыштым лудаш тӱҥалыт гын, марий калыкым туныктымо нерген шонаш тӱҥалыт. М. Шкетан. Когда юноши и девушки начнут писать на родном языке и читать написанное, тогда они начнут думать и о просвещении марийского народа.

    8. в знач. сущ. учение, теория; теоретические положения о какой-л. области действительности

    Социал-демократ-влак Марксын туныктымыж дене моктанат, а туштыжо нимо ужат уке. Н. Лекайн. Социал-демократы гордятся учением Маркса, а ведь там нет ничего нового.

    9. в знач. сущ. поучение, наставление, назидание, нравоучение

    Евангелийыште туныктымым ушышкет нал, вара титакетым шкат шижат. О. Тыныш. Припомни наставление в Евангелии, тогда сам почувствуешь свою вину.

    Марийско-русский словарь > туныктымо

  • 7 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 8 совместный оценочный эксперимент

    1. collaborative assessment experiment

    3.22 совместный оценочный эксперимент (collaborative assessment experiment): Межлабораторный эксперимент, в котором показатели работы каждой лаборатории оценивают в условиях применения одного и того же стандартного метода измерений на идентичном материале.

    Примечания

    19 Определения 3.16 и 3.20 применяют к величинам и результатам, которые могут принять любое значение в диапазоне измерений. Если результат измерений является дискретным или округленным, то каждый из пределов представляет собой минимальное дискретное или округленное значение, которое с доверительной вероятностью не менее 95 % не превышается абсолютной величиной разности между двумя единичными результатами измерений.

    20 Определения 3.8 - 3.11, 3.15, 3.16, 3.19 и 3.20 подразумевают теоретические значения, которые в действительности остаются неизвестными. Значения стандартных отклонений воспроизводимости и повторяемости, а также систематической погрешности, фактически определяемые экспериментальным путем (описанным в ГОСТ Р ИСО 5725-2 и ГОСТ Р ИСО 5725-4), представляют собой, со статистической точки зрения, оценки данных теоретических значений и, следовательно, содержат погрешности.

    Вследствие этого, например, уровни вероятности, связанные с пределами r и R, не будут точно равны 95 %. Они будут приближаться к 95 %, если в эксперименте по оценке прецизионности принимает участие большое количество лабораторий, но могут существенно отличаться от 95 %, если участвует в эксперименте менее 30 лабораторий.

    Это неизбежно, но в то же время не преуменьшает практическую полезность этих пределов, так как, в первую очередь, они были введены для суждения о том, могла ли разность между результатами быть приписана случайностям, присущим методу измерений, или нет. Разности, превышающие предел повторяемости (сходимости) r или предел воспроизводимости R, являются подозрительными.

    21 Условные обозначения r и R уже использованы для других целей: так r рекомендована в ИСО 3534-1 [1] как коэффициент корреляции и R (или W) - для диапазона рядов наблюдений. Тем не менее не должно возникать никаких недоразумений, если для предела повторяемости (сходимости) r и предела воспроизводимости R используют полные формулировки всякий раз, когда существует возможность неправильного понимания, особенно при ссылке в стандартах.

    Источник: ГОСТ Р ИСО 5725-1-2002: Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > совместный оценочный эксперимент

  • 9 глава

    (см. также абзац, параграф, книга, обзор) chapter
    Более прямой метод получения величины F рассматривается в главе 9. - A more direct procedure for obtaining F is considered in Chapter 9.
    Большая часть материала, представленного в данной главе, имела дело с... - Much of the material presented in this chapter has dealt with...
    В дальнейших главах излагается методология для... - The following chapters outline the methodology involved in...
    В данной главе мы будем заниматься подобными процессами. - This chapter will be concerned with such processes.
    В данной главе мы будем рассматривать лишь... - In this chapter we shall be concerned only with...
    В данной главе мы заложим теоретические основания для... - In this chapter we lay the theoretical foundations for...
    В данной главе мы предлагаем обсудить... - In this chapter we propose to discuss...
    В данной главе мы представим некоторые избранные материалы... - In the present chapter we shall give a selection of...
    В данной главе мы продолжим наше изучение (проблемы и т. п.)... - In this chapter, we will continue our study of...
    В данной главе мы разовьем теорию... - In this chapter we shall develop the theory of...
    В данной главе мы рассмотрим путь, которым... - In this chapter, we consider the way in which...
    В данной главе мы сформулируем метод для... - In this chapter, we shall formulate the procedure for...
    В данной главе мы уделим некоторое внимание (чвму-л)... - In this chapter we shall devote some attention to...
    В данной главе мы, главным образом, интересуемся... - We are concerned mainly in this chapter with...
    В данной главе позднее станет очевидно, что... - It will become evident later in this chapter that...
    В данной главе рассматривается... - It is the object of the present chapter to...
    В данной главе рассматривается еще один подход... - This chapter is concerned with yet another approach to...
    В предшествующих главах мы видели, что... - We have seen in preceding chapters that...
    В следующей главе мы (еще) вернемся к этому выражению. - We shall return to this expression in the next chapter.
    В следующей главе мы дадим количественное представление... - In the next chapter we give a more quantitative account of...
    В следующей главе мы увидим, что... - We shall see in the next chapter that...
    В следующих четырех главах мы будем рассматривать исключительно... - In the next four chapters we shall be concerned exclusively with...
    В соответствии с методом, намеченным в Главе 1, мы... - In accordance with the method outlined in Chapter 1, we...
    В третьей главе (= В главе 3) мы встретим другое обобщение той же самой основной идеи. - In Chapter 3 we shall meet another generalization of the same basic idea.
    В этой вводной главе мы сделаем обзор... - In this introductory chapter we shall review...
    В этой главе будут описываться два подхода к... - This chapter will describe two approaches to...
    В этой главе мы даем эффективный метод... - In this chapter we give an efficient method for...
    В этой главе мы рассматриваем различные случаи... - In this chapter we consider various cases of...
    В этой главе мы сосредоточимся на (проблеме, вопросе и т. п.)... - In this chapter we concentrate on...
    В этой главе не делалось попыток обсудить очень сложную проблему... -In this chapter no attempt has been made to discuss the very difficult problem of...
    В этой главе основное внимание будет направлено на... - In this chapter we will direct most of the attention toward...
    В этой главе рассматривается... - This chapter is concerned with...
    В этой главе формулируются основные положения... - This chapter provides an outline of...
    Данная глава будет посвящена описанию... - This chapter will be devoted to an exposition of...
    Данная глава начинается с описания... - This chapter begins with a description of...
    Данная глава завершается обсуждением... - The chapter concludes with a discussion of...
    Данная глава, в основном, посвящена объяснению... - This chapter is devoted primarily to explaining...
    Данная методика будет использоваться в последующих главах. - This procedure will be followed in subsequent chapters.
    Заключим данную главу несколькими словами относительно... - We conclude this chapter with a few words on...
    Значительная часть настоящей главы посвящена... - A large proportion of the present chapter is concerned with...
    Из содержания предыдущих глав мы уже знаем, что... - We already know from earlier chapters that...
    Книга состоит из восьми глав. - The book is divided into eight chapters.
    Многие идеи и результаты последней главы могут быть распространены на случай... - Many of the ideas and results of the last chapter can now be extended to the case of...
    Многие идеи, рассматриваемые в данной главе,... - Many of the ideas appearing in this chapter are...
    Мы (еще) вернемся к этой аналогии во второй главе. - We shall return later to this analogy in Chapter 2.
    Мы завершаем данную главу демонстрацией того, что... - We end this section by showing that...
    Мы можем применить некоторые результаты этой главы, чтобы проиллюстрировать... - We may apply some of the results of this chapter to illustrate...
    Мы обсудим этот эффект в другой главе. - We shall discuss this effect in a later chapter.
    Мы откладываем обсуждение этого явления до главы 5. - We defer discussion of this phenomenon until Chapter 5.
    Мы продолжим это (исследование) в главе 4. - We shall go further into this in Chapter 4.
    Мы также уже обсудили эту задачу в главе 2. - We have also discussed this problem in Chapter 2.
    Некоторые дальнейшие замечания могут быть найдены в главе 2. - Some further remarks may be found in Chapter 2.
    Некоторые из этих вопросов будут развиваться в следующей главе. - Some of these points will be developed further in the next chapter.
    Основная часть этой работы была проделана в главе 2. - The bulk of the work was done in Chapter 2.
    Основным вопросом данной главы является... - Our main business in this chapter is to...
    Остальная часть этой главы посвящена... - The rest of the chapter deals with... (
    Первые четыре главы данной книги должны быть доступны... - The first four chapters of this book should be accessible to...
    Всюду в данной главе мы будем предполагать, что... - Throughout this chapter we have assumed that...
    Позднее в этой главе мы узнаем, что... - Later in this chapter we will learn that...
    Пример его (метода) использования уже приведен в Главе 2. - An example of its use has already been given in Chapter 2.
    Рассуждение, приведенное в конце последней главы, показывает, что... - The argument at the end of the last chapter shows that...
    Результаты данной главы позволяют нам... - The results of the present chapter enable us to...
    Строгое обсуждение будет дано в главе 2. - A rigorous discussion will be given in Chapter 2.
    Теперь возвратимся к вопросу, поставленному в начале этой главы. - We now return to the question posed at the beginning of the chapter.
    Целью данной главы является представление... - It is the purpose of this chapter to present...
    Целью данной главы является разработка... - The aim of this chapter is to develop...
    Мы собираемся сделать в этой главе... - What we seek to do in this chapter is to...
    Что такое тензоры объясняется подробно в главе 3. - The subject of tensors is explained at length in Chapter 3.
    Эта глава почти полностью посвящается... - This chapter has been almost wholly concerned with...
    Эта глава представляет один подход к решению... - This chapter presents one approach to the solution of...
    Эта тема будет развиваться в следующей главе. - This subject will be developed in the following chapter.
    Эти данные будут использованы в следующей главе. - This information will be put into use in the next chapter.
    Эти явления обсуждаются в главе 5. - These phenomena are discussed in Chapter 5.
    Это будет темой следующей главы. - This will be the theme of the next chapter.
    Далее это обсуждается в главе 4 в связи с... - This is further discussed in Chapter 4 in conjunction with...
    Это не согласуется с терминологией главы 1. - This is at variance with the terminology of Chapter 1.
    Этот факт был отмечен без доказательства в главе 4. - This fact was noted without proof in Chapter 4.
    Этот эффект будет обсуждаться в главе 2, где будет показано, что... - This effect will be discussed in Chapter 2, where it will be shown that...

    Русско-английский словарь научного общения > глава

  • 10 теория экономического роста

    1. economic growth theory

     

    теория экономического роста
    Экономико-математическая дисциплина (область эконометрии), в центре которой — исследование макроэкономических моделей, характеризующих основные взаимосвязи общих показателей развития народного хозяйства, таких, как национальный доход, конечный продукт, норма накопления, объем капиталовложений и др. Для правильного понимания процессов развития народного хозяйства большое значение имеют: а) изучение основных факторов производства, их взаимосвязей и воздействия на результаты общественного производства; б) анализ обратных связей между ростом конечного продукта общества и расширением капитальных вложений; в) выявление характеристик основных типов экономического роста (таких, как экстенсивный и интенсивный), а также другие аспекты Т.э.р. Данная теория разрабатывает предпосылки равновесного сбалансированного роста экономики, условия ее оптимального развития, применяя при этом разветвленный математический, модельный аппарат. В частности, наиболее широко используются макроэкономические производственные функции (однофакторные и многофакторные модели экономического роста); они хорошо отработаны математически и статистически, могут реально служить инструментом планирования и прогнозирования. Создаются также динамические модели экономики магистрального типа, реализующие теоретические построения модели фон Неймана (см. Неймана модель) и ряд других. Основы Т.э.р. были заложены в докладе советского экономиста Г.А.Фельдмана, подготовленном им в связи с разработкой первого пятилетнего плана. В нем содержалась, в частности, модель роста национального дохода в зависимости от степени наращивания производственных фондов и эффективности их использования. Эта работа предвосхитила многие положения современных концепций экономического роста., в том числе и развивающихся за рубежом. Разрабатываются модели развития с возобновимыми и исчерпывающимися ресурсами, с неизменными и меняющимися (с появлением заменителей ресурсов) технологиями, а также модели, где численность населения выступает как управляемая переменная. Модели Т.э.р. используются в настоящее время отечественными экономистами при исследовании параметров и прогнозировании развития народного хозяйства на перспективу. Здесь в основу расчетов темпов развития экономики берутся модели, связывающие с национальным доходом (конечным продуктом) эффективность капитальных вложений в важнейшие отрасли производства, науки и техники, а также мероприятий по совершенствованию хозяйственного механизма. В современной экономической литературе на Западе представлены два основных направления теории роста: «неоклассическое» и «кейнсианское» («неокейнсианское«). Первое опирается на абстрактные модели «стабильной» экономики, имеющей тенденцию к полной занятости, содержащей гибкие цены факторов и совершенную конкуренцию. Второе рассматривает капиталистическую экономику как принципиально неустойчивую («балансирующую на острие ножа»); анализ здесь направлен на проблемы экономической нестабильности и безработицы. См. Солоу модель роста, Харрода-Домара модель.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > теория экономического роста

См. также в других словарях:

  • _2. Теоретическая база словаря и исходные теоретические положения — При работе над словарем мы опирались на следующие теоретические положения лексикологии и семантического синтаксиса. Первое. Идея единства лексики и грамматики. Это взаимодействие осуществляется главным образом на уровне семантических моделей… …   Экспериментальный синтаксический словарь

  • Теоретические конструкты (theoretical constructs) — Не составляет большого труда идентифицировать наблюдаемое поведение, напр., сказать, что чел. ест или бежит, значительно труднее определить, чем вызвано подобное поведение. Если известны релевантные условия, предшествующие данному поведению, напр …   Психологическая энциклопедия

  • ТЕОРЕТИЧЕСКИЕ МЕТОДЫ  НАУЧНОГО ПОЗНАНИЯ — 1)  Формализация – отображение содержательного знания в знаково символическом виде (формализованном языке),  когда рассуждения об объектах переносятся в плоскость  оперирования со  знаками  или  формулами; 2)  аксиоматический метод  – способ… …   Философия науки и техники: тематический словарь

  • ГОСТ Р ИСО 5725-1-2002: Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения — Терминология ГОСТ Р ИСО 5725 1 2002: Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения оригинал документа: 3.4 базовый элемент (ячейка) в эксперименте по оценке прецизионности… …   Словарь-справочник терминов нормативно-технической документации

  • МИ 2365-96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения — Терминология МИ 2365 96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения: Абсолютная погрешность измерений (абсолютная погрешность) Погрешность измерений, выраженная в единицах… …   Словарь-справочник терминов нормативно-технической документации

  • Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… …   Медицинская энциклопедия

  • СССР. Естественные науки —         Математика          Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… …   Большая советская энциклопедия

  • СССР. Общественные науки —         Философия          Будучи неотъемлемой составной частью мировой философии, философская мысль народов СССР прошла большой и сложный исторический путь. В духовной жизни первобытных и раннефеодальных обществ на землях предков современных… …   Большая советская энциклопедия

  • СССР. Технические науки —         Авиационная наука и техника          В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… …   Большая советская энциклопедия

  • Военная наука —         система знаний о подготовке и ведении войны государствами, коалициями государств или классами для достижения политических целей. Советская В. н. исследует характер возможных войн, законы войны и способы её ведения. Она разрабатывает… …   Большая советская энциклопедия

  • Менеджмент — (Management) Менеджмент это совокупность методов управления предприятием Теория, цели и задачи менеджмента, менеджер и его роль в развитии предприятия Содержание >>>>>>>>>>>> …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»